Liquid State Machine with Dendritically Enhanced Readout for Low-power, Neuromorphic implementations

Subhrajit Roy
Supervisor : Dr. Arindam Basu
OUTLINE

• Motivation for low-power machine learners and why Liquid State Machine?
• Liquid State Machine (LSM)
• LSM with parallel perceptron readout (LSM-PPR)
• LSM with dendritically enhanced readout (LSM-DER)
 – Concept of neuron with active dendrites
 – Architecture of LSM-DER
 – Network Re-wiring (NRW) rule
• Experiments and Results
 – Problem description
 – LSM-DER and NRW rule performance
 – Comparison with LSM-PPR
 – Stability with respect to non-idealities
• Conclusion
OUTLINE

• Motivation for low-power machine learners and why Liquid State Machine?
• Liquid State Machine (LSM)
• LSM with parallel perceptron readout (LSM-PPR)
• LSM with dendritically enhanced readout (LSM-DER)
 – Concept of neuron with active dendrites
 – Architecture of LSM-DER
 – Network Re-wiring (NRW) rule
• Experiments and Results
 – Problem description
 – LSM-DER and NRW rule performance
 – Comparison with LSM-PPR
 – Stability with respect to non-idealities
• Conclusion
Motivation for developing low-power, machine-learners

PROBLEMS
• Data rate / channel ~ 200 Kbps
• 1000 channels → 200 Mbps
• Huge power dissipation

UNSUSTAINABLE

SOLUTIONS
• On chip neural processing unit
• Requirement for low-power hardware implementations of supervised classifiers
OUTLINE

• Motivation for low-power machine learners and why Liquid State Machine?
• Liquid State Machine (LSM)
 • LSM with parallel perceptron readout (LSM-PPR)
 • LSM with dendritically enhanced readout (LSM-DER)
 – Concept of neuron with active dendrites
 – Architecture of LSM-DER
 – Network Re-wiring (NRW) rule
• Experiments and Results
 – Problem description
 – LSM-DER and NRW rule performance
 – Comparison with LSM-PPR
 – Stability with respect to non-idealities
• Conclusion
Liquid State Machine

Huge recurrent interconnection of spiking neurons

Synapses with random weights

Readout can be:
• Single Perceptron
• Parallel layer of perceptrons
• Multilayer perceptrons

Learning of only these synapses

No learning

Inputs: Spike Trains or Analog current

Task-specific training of readout

Properties of LSM

• Why the term Liquid? Short term memory effect leading to Temporal Integration.

Parallel Processing:
• Multiple readouts with the same liquid
• Each trained to perform different tasks on same inputs

Liquid Advantages:
1. Encodes Spike Times
2. Low dimension to high dimension → Increases separability
3. Recurrence → Memory effect
4. General → Multiple features extracted
OUTLINE

• Motivation for low-power machine learners and why Liquid State Machine?
• Liquid State Machine (LSM)
• LSM with parallel perceptron readout (LSM-PPR)
• LSM with dendritically enhanced readout (LSM-DER)
 – Concept of neuron with active dendrites
 – Architecture of LSM-DER
 – Network Re-wiring (NRW) rule
• Experiments and Results
 – Problem description
 – LSM-DER and NRW rule performance
 – Comparison with LSM-PPR
 – Stability with respect to non-idealities
• Conclusion
MLP: Works in both classification and approximation → H/W constraints

Parallel Perceptron: A single layer composed of finite number of perceptrons each receiving the same input is called a parallel perceptron.

An efficient algorithm (\textit{p}-delta learning rule) specifically designed for training of parallel perceptrons is used.

LSM-PPR limitation

1. If L liquid neurons and n readout neurons then total tunable synapses: Lxn
 - Difficult for VLSI implementation

2. Tunable synapses require high-resolution and non-volatile weights
 - Difficult for VLSI implementation

USE LOWER RESOURCES FOR GIVING SAME PERFORMANCE

USE BINARY SYNAPSES INSTEAD OF HIGH RES SYNAPSES
OUTLINE

• Motivation for low-power machine learners and why Liquid State Machine?
• Liquid State Machine (LSM)
• LSM with parallel perceptron readout (LSM-PPR)
• **LSM with dendritically enhanced readout (LSM-DER)**
 – Concept of neuron with active dendrites
 – Architecture of LSM-DER
 – Network Re-wiring (NRW) rule
• Experiments and Results
 – Problem description
 – LSM-DER and NRW rule performance
 – Comparison with LSM-PPR
 – Stability with respect to non-idealities
• Conclusion
Neurons with Active Dendrites

Motivation

- Currently considering only lumped dendritic nonlinearity
- Neurons with active dendrites have higher storage capacity

Source: Polsky et al., 2004

Source: Poirazi et al., 2001
Neurons with Active Dendrites

Linear Cell w Binary Synapses

Non linear cell w Binary Synapses

Unable to recognize the different combination of inputs

Capable of recognizing the different combination of inputs
Neurons with Active Dendrites

\[s: \text{Total number of synapses} \]
\[m: \text{No. of dendritic branches} \]
\[k: \text{No. of synapses per branch} \]
\[d: \text{Dimension of input} \]

\[B_N = \log_2 \left(\frac{s + d - 1}{s} \right) \]
\[B_L = \log_2 \left(\frac{k + d - 1}{k} + m - 1 \right) \]

- Synaptic weight = 0/1
- Not weight update, but Connection change
LSM w Dendritically Enhanced Readout (LSM-DER)

- The proposed algorithm LSM-DER constitutes the liquid of LSM followed by a two neuronal cell architecture.
- The parallel perceptron stage of LSM-PPR has been replaced by a two neuronal cell architecture.

LSM-PPR : $L \times n$ synapses
LSM-DER : L synapses
Network Re-Wiring (NRW) Learning Rule

- \(t \) = Teacher signal, \(y \) = LSM-DER output
- Applying Gradient Descent algorithm:

\[
\Delta w_{ij} = - \frac{\partial e^2}{\partial w_{ij}} = 2 < (t - y) \frac{\partial y}{\partial w_{ij}} > \\
= 2 < (t - y) \frac{\partial g \left(f_1^{DER}(x) - f_2^{DER}(x) \right)}{\partial w_{ij}} > \\
= 2 < (t - y) \frac{\partial g \left(\sum_{j=1}^{m} b \sum_{i=1}^{k} w_{ij} \right)}{\partial w_{ij}} >
\]

For positive cell: \(\Delta w_{ij} = 2 < (t - y) g' b_j x_{ij} > \)

For negative cell: \(\Delta w_{ij} = -2 < (t - y) g' b_j x_{ij} > \)

Binary synapses in our case so \(\Delta w_{ij} \) can be considered as a fitness parameter / correlation calculator \(c_{ij} \)

- \(g' \) dropped for ease in h/w implementation
- \(b() \) is a saturating squared non linearity

We search for the worst performing synapse i.e. lowest c_{ij} synapse in the set n_T.

Remove the connected input line to the synapse by any random input line \rightarrow No extra calculations but slow learning.

Place all the input lines in the dendrite of worst performing synapse \rightarrow Replace with the best \rightarrow Fast but exhaustive & requires lot of computations.

We take a middle path \rightarrow Choose a random set n_R of the input lines \rightarrow Replace by its best.
OUTLINE

• Motivation for low-power machine learners and why Liquid State Machine?
• Liquid State Machine (LSM)
• LSM with parallel perceptron readout (LSM-PPR)
• LSM with dendritically enhanced readout (LSM-DER)
 – Concept of neuron with active dendrites
 – Architecture of LSM-DER
 – Network Re-wiring (NRW) rule

• Experiments and Results
 – Problem description
 – LSM-DER and NRW rule performance
 – Comparison with LSM-PPR
 – Stability with respect to non-idealities

• Conclusion, Publications and Future Work
Experiments and Results

- **Task 1**: Spike Train Classification Problem

![Graph showing possible spike train segments and liquid output for Class 1 and Class 2 neurons.](image)

- Testing input spike train: Jittered version of Class 1 input

![Graph showing liquid output for Class 1 and Class 2 neurons.](image)
Experiments and Results

- **Task II:**

 Retrieval of sum of rates:

 - 4 Poisson spike trains with randomly modulated firing rates are injected into the liquid.
 - At any point of time t, the job of the network is then to give as output the normalized sum of input rates averaged over the last 30 ms.
Results: Performance of LSM-DER and NRW algorithm

Training Error vs Iterations

Task I: Classification

Task II: Approximation

Successful Approximation of target function by LSM-DER
Results: Comparison between LSM-DER and LSM-PPR

- Performance comparison of LSM-DER and LSM-PPR with varying n
- LSM-PPR with $n = 1$ (i.e. single perceptron readout) has same number of tunable synapses as LSM-DER
- For $n = 1$, LSM-DER gives 3.3 and 2.4 times less error for Task I and II respectively.

With the requirement of 1 perceptron we are getting better performance than n perceptrons

LSM-PPR can never achieve the performance of LSM-DER

Task I : Classification

Task II : Approximation
Stability with respect to non-idealities

Hardware implementation of DER
[Amitava et al. 2015]

Hardware implementation of PPR
[Amitava et al. 2015]
Stability with respect to non-idealities

- Monte Carlo simulations of DPI synapse and Square Block Circuit

Variation in DPI Synapse

- DER: 2.33% increase
- PPR: 4.73% increase

Increased stability due to binary synapses

Maximum Variation
1. $I_0 \sim 13\%$
2. $\tau_s \sim 10.1\%$
3. $c_{ni} \sim 18\%$
OUTLINE

• Motivation for low-power machine learners and why Liquid State Machine?
• Liquid State Machine (LSM)
• LSM with parallel perceptron readout (LSM-PPR)
• LSM with dendritically enhanced readout (LSM-DER)
 – Concept of neuron with active dendrites
 – Architecture of LSM-DER
 – Network Re-wiring (NRW) rule
• Experiments and Results
 – Problem description
 – LSM-DER and NRW rule performance
 – Comparison with LSM-PPR
 – Stability with respect to non-idealities
• Conclusion
Conclusion

- Proposed new hardware-friendly readout stage for Liquid State Machine
- LSM-DER and NRW rule achieves better results using less resources
- LSM-DER uses binary synapses
- Resilient to VLSI mismatch
Thank You

Questions?