A Modified Differential Evolution for Autonomous Deployment and Localization of Sensor Nodes

Subhranjit Roy
Jadavpur University
Kolkata 700032, India

Sk. Minhazul Islam
Jadavpur University
Kolkata 700032, India

Swagatam Das
Jadavpur University
Kolkata 700032, India

Saurav Ghosh
Jadavpur University
Kolkata 700032, India

Ajith Abraham
VŠB - Technical University of Ostrava
Ostrava, Czech Republic

Pavel Krömer
VŠB - Technical University of Ostrava
Ostrava, Czech Republic

swagatamdas19@yahoo.co.in
ajith.abraham@ieee.org
pavel.kromer@vsb.cz

ABSTRACT
The performance of a wireless sensor network (WSN) is largely influenced by the optimal deployment and accurate localization of sensor nodes. This article considers real-time autonomous deployment of sensor nodes from an unmanned aerial vehicle (UAV). This kind of deployment has importance, particularly in ad hoc WSNs, for emergency applications, such as disaster monitoring and battlefield surveillance. The objective is to deploy the nodes only in the terrains of interest, which are identified by segmentation of the images captured by a camera on board the UAV. In this article we propose an improved variant of an important evolutionary algorithm Differential Evolution for image segmentation and for distributed localization of the deployed nodes. Simulation results show that the proposed algorithm ADE_pBX performs image segmentation faster than both types of algorithm for optimal thresholds. Moreover in case of localization it gives more accurate results than the compared algorithms.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods, and Search --- Heuristic methods; G.1.6 [Numerical Analysis]: Optimization --- Global optimization; G.3 --- Probabilistic algorithms

General Terms
Algorithms, theory, experimentation

Keywords

1. INTRODUCTION
In this paper, an improved Differential Evolution (DE) [1] variant, ADE_pBX is proposed and applied to an interesting application-autonomous deployment by image thresholding [2] and localization [3] of sensor nodes. ADE_pBX has successfully performed 2-level, 3-level and 4-level thresholding of an image captured from a downward-pointing camera on board the UAV and also faster than the other competitor algorithms. ADE_pBX has also outperformed other algorithms for post deployment distributed node localization in the WSN.

2. THE ADE_pBX ALGORITHM
In DE, greedy strategies like DE/current-to-best/k and DE/best/k benefit from their fast convergence by guiding the evolutionary search with the best solution so far discovered, thereby converging faster to that point but in such cases due to exploitative tendencies the particle may get trapped into local optima. Taking into consideration these facts and to overcome the limitations of fast but less reliable convergence performance of DE/current-to-best/1 scheme, in this article, we propose a less greedy and more explorative variant of the DE/current-to-best/1 mutation strategy by utilizing the best vector of a dynamic group of q% of the randomly selected population members for each target vector. The new scheme, which we call DE/current-to-gr_best/1, can be expressed as:

\[\tilde{v}_{i,k} = \hat{x}_{i,k} + F \cdot (\hat{x}_{gr, best, i,k} - \tilde{x}_{i,k} + \hat{x}_{r, k} - \tilde{x}_{r, k}) \]

where \(\hat{x}_{gr, best, i,k} \) is the best of q% vectors randomly chosen from the current population whereas \(\hat{x}_{r, k} \) and \(\tilde{x}_{r, k} \) are two distinct vectors picked randomly from the current population. The parameter q is known as the group size which controls the greediness of the mutation scheme DE/target-to-gr_best/1. The crossover operation used in ADE_pBX is named as p-best crossover where for each donor vector, a vector is randomly selected from the p top-ranking vectors (according to their objective function values) in the current population and then normal binomial crossover between the donor vector and the randomly selected p-best vector to generate the trial vector at the same index.

2.1. Parameter Adaptation Schemes in ADE_pBX

2.1.1. Scale Factor Adaptation
At every generation, the scale factor \(F_i \) of each individual target vector is independently generated as:

\[F_i = Cauchy(F_m, 0.1) \]

where Cauchy(F_m,0.1) is a random number sampled from a Cauchy distribution with location parameter \(F_m \) and scale parameter 0.1. Denote \(F_{success} \) as the set of the successful scale factors, so far, of the current generation generating better trial vectors that are likely to advance to the next generation. Also let \(mean_q(F_{success}) \) is the simple arithmetic mean of all scale factors associated with population members in generation \(G - 1 \).
Location parameter F_m is updated at the end of each generation in the following manner:

$$F_m = w_f \cdot F_m + (1 - w_f) \cdot \text{mean}_{\text{Pow}}(F_{\text{success}})$$ \hspace{1cm} (1)

The weight factor w_f is set in the following way:

$$w_f = 0.9 + 0.01 \cdot \text{rand}(0,1)$$ \hspace{1cm} (2)

where mean_{Pow} stands for power mean given by:

$$\text{mean}_{\text{Pow}}(F_{\text{success}}) = \sum_{x \in F_{\text{success}}} (x^n/[F_{\text{success}}]^{1/n})$$ \hspace{1cm} (3)

2.1.2. Crossover Probability Adaptation

At every generation the crossover probability C_{r_i} of each individual vector is independently generated as:

$$C_{r_i} = \text{Gaussian}(C_{r_m}, 0.1)$$ \hspace{1cm} (4)

where $\text{Gaussian}(C_{r_m}, 0.1)$ is a random number sampled from a Gaussian distribution according with mean C_{r_m} and standard deviation 0.1. C_{r_i} is regenerated if it falls outside the interval [0, 1]. Denote $C_{r_{\text{success}}}$ as the set of all successful crossover probabilities C_{r_i}'s at the current generation. The mean of the normal distribution C_{r_m} updated at the end of each generation as:

$$C_{r_m} = w_{cr} \cdot C_{r_m} + (1 - w_{cr}) \cdot \text{mean}_{\text{Pow}}(C_{r_{\text{success}}})$$ \hspace{1cm} (5)

with the weight being set as:

$$w_{cr} = 0.9 + 0.001 \cdot \text{rand}(0,1)$$ \hspace{1cm} (6)

The power mean is calculated as:

$$\text{mean}_{\text{Pow}}(C_{r_{\text{success}}}) = \sum_{x \in C_{r_{\text{success}}}} (x^n/[C_{r_{\text{success}}}]^{1/n})$$ \hspace{1cm} (7)

3. EXPERIMENTAL RESULTS

3.1. Image thresholding for autonomous deployment

All the algorithms are used to calculate the optimal thresholding values by minimizing the within-class variance of the distribution of intensity levels in a terrain image. ADE_{pBX} is used for finding the threshold values for 2, 3 and 4 level image thresholding and it had been successful in finding the optimal threshold values within minimum iteration. The lake image and the result of 2, 3 and 4 level thresholding on it is shown Figure 1. Since all the nodes are deployed we are unaware of the location of the nodes so we find out the location of the nodes with the help of the beacons as references using ADE_{pBX}. Fifty ADE_{pBX}-based localization experiments are conducted for $P_n = 2$ and $P_n = 5$. The performance metric (N_{N_i}, E_l) is computed for each contestant algorithm and Table 1 shows the mean values of N_{N_i} and E_l for each algorithm at the end of four iterations both for $P_n = 2$ and $P_n = 5$.

4. ACKNOWLEDGEMENT

This work was supported by the Czech Science Foundation, under the grant no. GA102/09/1494.

5. REFERENCES

